首页> 外文OA文献 >The influence of microbial physiology on biocatalyst activity and efficiency in the terminal hydroxylation of n-octane using Escherichia coli expressing the alkane hydroxylase, CYP153A6
【2h】

The influence of microbial physiology on biocatalyst activity and efficiency in the terminal hydroxylation of n-octane using Escherichia coli expressing the alkane hydroxylase, CYP153A6

机译:使用表达烷烃羟化酶CYP153A6的大肠杆菌,微生物生理学对正辛烷末端羟化反应中生物催化剂活性和效率的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biocatalyst improvement through molecular and recombinant means should be complemented with efficient process design to facilitate process feasibility and improve process economics. This study focused on understanding the bioprocess limitations to identify factors that impact the expression of the terminal hydroxylase CYP153A6 and also influence the biocatalytic transformation of n–octane to 1-octanol using resting whole cells of recombinant E. coli expressing the CYP153A6 operon which includes the ferredoxin (Fdx) and the ferredoxin reductase (FdR). Results: Specific hydroxylation activity decreased with increasing protein expression showing that the concentration of active biocatalyst is not the sole determinant of optimum process efficiency. Process physiological conditions including the medium composition, temperature, glucose metabolism and product toxicity were investigated. A fed-batch system with intermittent glucose feeding was necessary to ease overflow metabolism and improve process efficiency while the introduction of a product sink (BEHP) was required to alleviate octanol toxicity. Resting cells cultivated on complex LB and glucose-based defined medium with similar CYP level (0.20 μmol gDCW -1) showed different biocatalyst activity and efficiency in the hydroxylation of octane over a period of 120 h. This was influenced by differing glucose uptake rate which is directly coupled to cofactor regeneration and cell energy in whole cell biocatalysis. The maximum activity and biocatalyst efficiency achieved presents a significant improvement in the use of CYP153A6 for alkane activation. This biocatalyst system shows potential to improve productivity if substrate transfer limitation across the cell membrane and enzyme stability can be addressed especially at higher temperature. Conclusion: This study emphasises that the overall process efficiency is primarily dependent on the interaction between the whole cell biocatalyst and bioprocess conditions.
机译:通过分子和重组手段改进生物催化剂应辅以有效的过程设计,以促进过程的可行性和改善过程的经济性。这项研究的重点是理解生物过程的局限性,以识别影响末端羟化酶CYP153A6表达并影响正辛烷向1-辛醇的生物催化转化的因素,使用表达CYP153A6操纵子的重组大肠杆菌静息全细胞,其中包括铁氧还蛋白(Fdx)和铁氧还蛋白还原酶(FdR)。结果:比羟基化活性随蛋白质表达的增加而降低,这表明活性生物催化剂的浓度并不是最佳工艺效率的唯一决定因素。研究了过程生理条件,包括培养基组成,温度,葡萄糖代谢和产物毒性。间歇补料的补料分批系统对于缓解溢流代谢和提高工艺效率是必需的,而为了降低辛醇毒性,则需要引入产物沉(BEHP)。在具有相似CYP水平(0.20μmolgDCW -1)的复杂LB和葡萄糖基定义培养基上培养的静止细胞在120 h内显示出不同的生物催化剂活性和辛烷羟基化效率。这受不同的葡萄糖摄取速率的影响,葡萄糖摄取速率直接与辅因子再生和全细胞生物催化中的细胞能量有关。达到的最大活性和生物催化剂效率表明使用CYP153A6进行烷烃活化有显着改善。如果可以解决底物在细胞膜上的转移限制和酶稳定性问题,尤其是在较高温度下,这种生物催化剂系统将显示出提高生产率的潜力。结论:这项研究强调总体过程效率主要取决于全细胞生物催化剂与生物过程条件之间的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号